RxWeaver: A lightweight and flexible error handler tools for RxJava2.

Weaver 翻译过来叫做 织布鸟,我最初的目的也正是让这个工具能够对逻辑代码正确地组织,达到实现RxJava全局Error处理的需求。

怎么用?可以做到什么程度?

为了代码的足够简洁,我选择使用Kotlin作为示范代码,我保证你可以看懂并理解它们——如果你的项目中适用的开发语言是Java,也请不用担心, RxWeaver 同样提供了Java版本的依赖和示例代码,你可以在这里找到它。

RxWeaver的配置非常简单,你只需要配置好对应的GlobalErrorTransformer类,然后在需要处理error的网络请求代码中,通过compose()操作符,将GlobalErrorTransformer交给RxJava, 请注意,仅仅需要一行代码

private fun requestHttp() {
serviceManager.requestHttp() // 网络请求
.compose(RxUtils.handleGlobalError(this)) // 加上这行代码
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe( // …)
}

RxUtils.handleGlobalError<UserInfo>(this)类似Java中的静态工具方法,它会返回一个对应GlobalErrorTransformer的一个实例——里面存储的是对应的error处理逻辑,这个类并不是 RxWeaver 的一部分,而是根据不同项目的不同业务,自己实现的一个类:

object RxUtils {

fun handleGlobalError(activity: FragmentActivity): GlobalErrorTransformer {
// …
}
}

现在我们需要知道的是,这样一行代码,可以做到什么样的程度

让我们从3个不同梯度的需求看看这个工具的韧性:

1.当接受到某种Error时,Toast对应的信息展示给用户

这是最常见的一种需求,当出现某种特殊异常(本案例以JSONException为例),我们会通过Toast提示这样的消息给用户:

全局异常捕获-Json解析异常!

fun test() {
Observable.error(JSONException(“JSONException”))
.compose(RxUtils.handleGlobalError(this))
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe {
// …
}
}

毫无疑问,当没有加compose(RxUtils.handleGlobalError<UserInfo>(this))这行代码时,这次订阅的结果必然是弹出一个 “onError:xxxx”的 toast。

现在我们加上了compose的这行代码,让我们拭目以待:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

看起来成功了,即使我们在onError()里面针对Exception做出了单独的处理,但是这个JSONException依然被全局捕获了,并弹出了一个额外的toast :“全局异常捕获-Json解析异常!” 。

这似乎是一个很简单的需求,我们提升一点难度:

2.当接收到某种Error时,弹出Dialog

这次需求是:

若接收到一个ConnectException(连接异常),我们让弹出一个dialog,这个dialog只会弹一次,若用户选择重试,重新请求API

又回到了上文中这个可能会引发 Callback Hell 的需求,我们疑问,如何保证 Dialog和重试逻辑正确执行的同时,不打破Observable流的连续性(链式调用)

fun test2() {
Observable.error(ConnectException()) // 这次我们把异常换成了ConnectException
.compose(RxUtils.handleGlobalError(this))
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe {
// …
}
}

依然是熟悉的代码,这次我们把异常换成了ConnectException,我们直接看结果:

因为我们数据源是一个固定的ConnectException,因此我们无论怎么重试,必然都只会接收到ConnectException,这不重要,你发现没有,即使是一个复杂的需求(弹出dialog,用户选择后,决定是否重新请求这个流),RxWeaver 依然可以胜任。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

最后一个案例,让我们再来一个更复杂的。

3.当接收到Token失效的Error时,跳转login界面。

详细需求是:

当接收到Token失效的Error时,跳转login界面,用户重新登录成功后,返回初始界面,并重新请求API;如果用户登录失败或取消登录,弹出错误信息。

显然这个逻辑有点复杂了, 对于实现这个需求来讲,似乎不太现实,这次是否会束手无策呢?

fun test3() {
Observable.error(TokenExpiredException())
.compose(RxUtils.handleGlobalError(this))
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
subscribe {
// …
}
}

这次我们把异常换成了TokenExpiredException(因为直接实例化一个HttpException过于复杂,所以我们自定义一个异常模拟代替它),我们直接看结果:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当然,无论怎么重试,数据源始终只会发射TokenExpiredException,但是我们成功实现了这个看似复杂的需求。

4. 我想说明什么?

我认为RxWeaver达到了我心目中的设计要求:

  • 轻量级

你不需要担心 RxWeaver 的体积,它足够的轻量,轻量到所有类加起来只有不到200行代码,同时,除了RxJavaRxAndroid,它 没有任何其它的依赖 ,体积大小只有3kb。

  • 灵活

RxWeaver 的配置不需要 修改 或者 删除 任意一行已经存在的业务代码——它是完全可插拔的。

  • 低学习成本

它的原理也是非常 简单 的,只要熟悉了onErrorResumeNextretryWhendoOnError这几个关键的操作符,你就可以马上上手对应的配置。

  • 高扩展性

可以通过接口实现任意复杂的需求实现。

原理

这似乎本末倒置了,对于一个工具来说,熟练使用API 往往比 阅读源码并了解原理 优先级更高一些。但是我的想法是,如果你先了解了原理,这个工具的使用你会更加得心应手。

RxWeaver的原理复杂吗?

实际上,RxWeaver的源码非常简单,简单到组件内部 没有任何Error处理逻辑,所有的逻辑都交给用户进行配置,它只是一个 中间件

它的原理也是非常 简单 的,只要熟悉了onErrorResumeNextretryWhendoOnError这几个关键的操作符,你就可以马上上手对应的配置。

1.compose操作符

对于全局异常的处理,我只需要在既有代码的 链式调用 加上一行代码,配置一个 GlobalErrorTransformer<T> 交给 compose() 操作符————这个操作符是 RxJava 给我们提供的可以面向 响应式数据类型 (Observable/Flowable/Single等等)进行 AOP 的接口, 可以对响应式数据类型 加工修饰 ,甚至 替换

这意味着,在既有的代码上,使用compose()操作符,我可以将一段特殊处理的逻辑代码插入到这个Observable中,这实在太方便了。

对compose操作符不了解的同学,请参考 【译】避免打断链式结构:使用.compose()操作符 @by小鄧子

compose() 操作符需要我传入一个对应 响应式类型 (Observable/Flowable/Single等等)的Transformer接口,但是问题是不同的 响应式类型 对应不同的 Transformer 接口,不同的于是我们实现了一个通用的 GlobalErrorTransformer<T> 接口以 兼容不同响应式类型的事件流

class GlobalErrorTransformer constructor(
private val globalOnNextRetryInterceptor: (T) -> Observable = { Observable.just(it) },
private val globalOnErrorResume: (Throwable) -> Observable = { Observable.error(it) },
private val retryConfigProvider: (Throwable) -> RetryConfig = { RetryConfig() },
private val globalDoOnErrorConsumer: (Throwable) -> Unit = { },
private val upStreamSchedulerProvider: () -> Scheduler = { AndroidSchedulers.mainThread() },
private val downStreamSchedulerProvider: () -> Scheduler = { AndroidSchedulers.mainThread() }
) : ObservableTransformer<T, T>, FlowableTransformer<T, T>, SingleTransformer<T, T>, MaybeTransformer<T, T>, CompletableTransformer {
// …
}

现在我们思考一下,如果我们想把error处理的逻辑放在GlobalErrorTransformer里面,把这个GlobalErrorTransformer交给compose() 操作符,就等于把error处理的逻辑全部 插入 到既有的Observable事件流中了:

fun test() {
observable
.compose(RxUtils.handleGlobalError(this)) // 插入异常处理逻辑
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
subscribe {
// …
}
}

同理,如果某个API不需要追加全局异常处理的逻辑,只需要把这行代码删掉即可,不会影响其他的业务代码。

这是一个不错的思路,接下来,我们需要思考的是,如何将不同的异常处理逻辑加进GlobalErrorTransformer中?

2.简单的全局异常处理:doOnError操作符

这个操作符的作用实在非常明显了,就是当我们接收到某个 Throwable 时,想要做的逻辑:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这实在很适合大部分简单的错误处理需求,就像上文的需求1一样,当我们接收到某种指定的异常,弹出对应的message提示用户,逻辑代码如下:

when (error) {
is JSONException -> {
Toast.makeText(activity, “全局异常捕获-Json解析异常!”, Toast.LENGTH_SHORT).show()
}
else -> {

}
}

这种错误的处理方式, 不会对既有的Observable进行变换 ,也就是说,JSONException 依然会最终传递到subscribe的 onError() 的回调中——你依然需要实现 onError() 的回调,哪怕什么都不做,如有必要,再进行特殊的处理,否则会发生崩溃。

这种方式很简单,但是涉及复杂的需求就无能为力了,这时候我们就需要借助onErrorResumeNext操作符了。

3.复杂的异步Error处理:onErrorResumeNext操作符

以上文的需求2为例,若接收到一个指定的异常,我们需展示一个Dialog,提示用户是否重试—— 这种情况下,doOnError操作符明显无能为力,因为它不具有 对Observable进行变换的能力

这时就需要 onErrorResumeNext 操作符上场了,它的作用是:当流的事件传递过程中发生了错误,我们可以将一个新的流交个 onErrorResumeNext 操作符,以保证事件流的继续传递。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是一个被严重低估的操作符,这个操作符意味着,只要你给一个Observable<T>的,就能继续往下传递事件,那么,这和需求中的 展示一个Dialog供用户选择 有关系吗?

当然有关系,我们只需要把Dialog的事件转换成对应的Observable即可:

object RxDialog {

/**

  • 简单的示例,弹出一个dialog提示用户,将用户的操作转换为一个流并返回
    */
    fun showErrorDialog(context: Context,
    message: String): Single {

return Single.create { emitter ->
AlertDialog.Builder(context)
.setTitle(“错误”)
.setMessage(“您收到了一个异常:$message,是否重试本次请求?”)
.setCancelable(false)
.setPositiveButton(“重试”) { _, _ -> emitter.onSuccess(true) }
.setNegativeButton(“取消”) { _, _ -> emitter.onSuccess(false) }
.show()
}
}
}

RxDialog的 showErrorDialog() 函数将会展示一个Dialog,返回值为一个 Single<Boolean> 的流,当用户点击 确定 按钮,订阅者会接收到一个 true 事件,反之,点击 取消 按钮,则会收到一个 false 事件。

RxJava还能这么用?

当然,RxJava所代表的是一种响应式的编程范式,在刚接触RxJava的时候,我们都见过这样一种说法:RxJava 非常强大的一点便是 异步

现在我们回过头来,网络请求的数据流 代表的是一种异步,难道 弹出一个dialog,等待的用户选择结果 难道不也是一种异步吗?

换句话说,网络请求 的流中事件意味着 网络请求的结果,那么上文中的 Single<Boolean> 代表着流中的事件是 ** Dialog的点击事件**。

其实RxJava发展的这些年来,Github上的RxJava扩展库层出不穷,比如RxPermission,RxBinding等等等等,前者是将 权限请求 的结果作为事件,交给了Observable进行传递;后者则是将 **View对应的事件 ** (比如点击事件,长按事件等等)交给了Observable

回过头来,我们现在通过RxDialog创建了一个 响应式的Dialog,并获取到了用户的选择结果Single<Boolean>,接下来我们需要做的就只是根据Single<Boolean>中事件的值来判断 是否重新请求网络数据 了。

4.重试的处理:retryWhen操作符

RxJava提供了 retryWhen() 操作符,交给我们去处理是否重新执行流的订阅(本文中就是指重新进行网络请求):

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

篇幅所限,我不会针对这个操作符进行太多的讲解,关于 retryWhen() 操作符,请参考:

【译】对RxJava中.repeatWhen()和.retryWhen()操作符的思考 by 小鄧子

继续上文的思路,我们到了Dialog对应的Single<Boolean>流,当用户选择后,实例化一个RetryConfig 对象,并把选择的结果Single<Boolean>交给了 condition 属性:

RetryConfig(condition = RxDialog.showErrorDialog(params))

data class RetryConfig(
val maxRetries: Int = DEFAULT_RETRY_TIMES, // 最大重试次数,默认1
val delay: Int = DEFAULT_DELAY_DURATION, // 重试延迟,默认1000ms
val condition: () -> Single = { Single.just(false) } // 是否重试
)

现在让我们来重新整理一下思路:

1.当用户接收到一个指定的异常时,弹出一个Dialog,其选择结果为Single<Boolean>
2.RetryConfig 内部存储了一个Single<Boolean> 的属性,这是一个决定了是否重试的函数;
3.当用户选择了确认按钮,将Single(true)交给并实例化一个RetryConfig ,这意味着会重试,如果选择了取消,则为Single(false),意味着不会重试。

5.似乎…完成了?

看来,仅仅需要这几个操作符,Error处理复杂的需求我们已经能够实现了?

的确如此,实际上,GlobalErrorTransformer内部的处理,也正是调用这几个操作符:

class GlobalErrorTransformer constructor(
private val globalOnNextRetryInterceptor: (T) -> Observable = { Observable.just(it) },
private val globalOnErrorResume: (Throwable) -> Observable = { Observable.error(it) },
private val retryConfigProvider: (Throwable) -> RetryConfig = { RetryConfig() },
private val globalDoOnErrorConsumer: (Throwable) -> Unit = { },
private val upStreamSchedulerProvider: () -> Scheduler = { AndroidSchedulers.mainThread() },
private val downStreamSchedulerProvider: () -> Scheduler = { AndroidSchedulers.mainThread() }
) : ObservableTransformer<T, T>,
FlowableTransformer<T, T>,
SingleTransformer<T, T>,
MaybeTransformer<T, T>,
CompletableTransformer {

override fun apply(upstream: Observable): Observable =
upstream
.flatMap {
globalOnNextRetryInterceptor(it)
}
.onErrorResumeNext { throwable: Throwable ->
globalOnErrorResume(throwable)
}
.observeOn(upStreamSchedulerProvider())
.retryWhen(ObservableRetryDelay(retryConfigProvider))
.doOnError(globalDoOnErrorConsumer)
.observeOn(downStreamSchedulerProvider())

// 其他响应式类型同理…
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

最后

Android学习是一条漫长的道路,我们要学习的东西不仅仅只有表面的 技术,还要深入底层,弄明白下面的 原理,只有这样,我们才能够提高自己的竞争力,在当今这个竞争激烈的世界里立足。

人生不可能一帆风顺,有高峰自然有低谷,要相信,那些打不倒我们的,终将使我们更强大,要做自己的摆渡人。

资源持续更新中,欢迎大家一起学习和探讨。

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门即可获取!

最后

Android学习是一条漫长的道路,我们要学习的东西不仅仅只有表面的 技术,还要深入底层,弄明白下面的 原理,只有这样,我们才能够提高自己的竞争力,在当今这个竞争激烈的世界里立足。

人生不可能一帆风顺,有高峰自然有低谷,要相信,那些打不倒我们的,终将使我们更强大,要做自己的摆渡人。

资源持续更新中,欢迎大家一起学习和探讨。

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门即可获取!
Logo

开源鸿蒙跨平台开发社区汇聚开发者与厂商,共建“一次开发,多端部署”的开源生态,致力于降低跨端开发门槛,推动万物智联创新。

更多推荐