Android之OkHttp网络架构源码深入分析(揭开神秘的面纱),建议细读
说一千道一万,不如自己去行动。要想在移动互联网的下半场是自己占有一席之地,那就得从现在开始,从今天开始,马上严格要求自己,既重视业务实现能力,也重视基础和原理。基础夯实好了,高楼才能够平地而起,稳如泰山。最后为了帮助大家深刻理解Android相关知识点的原理以及面试相关知识,这里放上相关的我搜集整理的24套腾讯、字节跳动、阿里、百度2020-2021面试真题解析,我把技术点整理成了视频和PDF(实
this.internalCache = builder.internalCache;
this.socketFactory = builder.socketFactory;
boolean isTLS = false;
for (ConnectionSpec spec : connectionSpecs) {
isTLS = isTLS || spec.isTls();
}
if (builder.sslSocketFactory != null || !isTLS) {
this.sslSocketFactory = builder.sslSocketFactory;
this.certificateChainCleaner = builder.certificateChainCleaner;
} else {
X509TrustManager trustManager = Util.platformTrustManager();
this.sslSocketFactory = newSslSocketFactory(trustManager);
this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
}
if (sslSocketFactory != null) {
Platform.get().configureSslSocketFactory(sslSocketFactory);
}
this.hostnameVerifier = builder.hostnameVerifier;
this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
certificateChainCleaner);
this.proxyAuthenticator = builder.proxyAuthenticator;
this.authenticator = builder.authenticator;
this.connectionPool = builder.connectionPool;
this.dns = builder.dns;
this.followSslRedirects = builder.followSslRedirects;
this.followRedirects = builder.followRedirects;
this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
this.connectTimeout = builder.connectTimeout;
this.readTimeout = builder.readTimeout;
this.writeTimeout = builder.writeTimeout;
this.pingInterval = builder.pingInterval;
if (interceptors.contains(null)) {
throw new IllegalStateException("Null interceptor: " + interceptors);
}
if (networkInterceptors.contains(null)) {
throw new IllegalStateException("Null network interceptor: " + networkInterceptors);
}
}
在new OkHttpClient()内部使用构造器模式初始化了一些配置信息:支持协议、任务分发器(其内部包含一个线程池,执行异步请求)、连接池(其内部包含一个线程池,维护connection)、连接/读/写超时时长等信息。
public Builder() {
dispatcher = new Dispatcher();// 分发器
protocols = DEFAULT_PROTOCOLS;// HTTP 协议
connectionSpecs = DEFAULT_CONNECTION_SPECS;// 传输层版本和连接协议
eventListenerFactory = EventListener.factory(EventListener.NONE);// 事件监听工厂
proxySelector = ProxySelector.getDefault();// 代理选择器
cookieJar = CookieJar.NO_COOKIES;// cookie
socketFactory = SocketFactory.getDefault();// socket 工厂
hostnameVerifier = OkHostnameVerifier.INSTANCE;// 主机名字确认
certificatePinner = CertificatePinner.DEFAULT;// 证书链
proxyAuthenticator = Authenticator.NONE;// 代理服务器身份验证
authenticator = Authenticator.NONE;// 源服务器身份验证
connectionPool = new ConnectionPool();// 连接池
dns = Dns.SYSTEM;// 域名
followSslRedirects = true;// 是否遵循 ssl 重定向
followRedirects = true;// 是否遵循重定向
retryOnConnectionFailure = true;// 连接失败的时候是否重试
connectTimeout = 10_000;// 连接超时
readTimeout = 10_000;// 读超时
writeTimeout = 10_000;// 写超时
pingInterval = 0;// HTTP / 2 和 Web 套接字 ping 之间的时间间隔
}
2.2 Request 对象
Request request = new Request.Builder()
.url(url)
.build();
/Request/
//…
final HttpUrl url;
final String method;
final Headers headers;
final @Nullable RequestBody body;
final Map<Class<?>, Object> tags;
//…
每一次网络请求都是一个Request,Request是对url,method,header,body的封装,也是对Http协议中请求行,请求头,实体内容的封装
通常我们通过构建折模式来构建一个Request对象来来设置一些请求链接(url)、请求方法(method)、请求头(headers)、请求体(body)、标签(tag,可作为取消请求的标记)
2.3 Call对象
Call call = client.newCall(request);
@Override public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
// Safely publish the Call instance to the EventListener.
RealCall call = new RealCall(client, originalRequest, forWebSocket);
call.eventListener = client.eventListenerFactory().create(call);
return call;
}
RealCall 是 Call 的实现类,Call 定义了请求相关的操作,例如同步异步、取消请求等方法。所以后续的请求相关操作基本都是在调用 Call 定义的方法,而这些方法真正的执行是它的实现类 RealCall
2.4请求数据
请求的整个预览图

同步请求 代码如下:
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException(“Already Executed”);
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {
client.dispatcher().executed(this);// (1)
Response result = getResponseWithInterceptorChain();// (2)
if (result == null) throw new IOException(“Canceled”);
return result;
} catch (IOException e) {
eventListener.callFailed(this, e);
throw e;
} finally {
client.dispatcher().finished(this);// (3)
}
}
/Dispatcher/
synchronized void executed(RealCall call) {
runningSyncCalls.add(call);
}
// RealCall.java
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
// 创建一个拦截器链
List interceptors = new ArrayList<>();
// 应用拦截器
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
// 网络拦截器
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
// originalRequest:我们写的 request
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
①根据上面源码我们可以知道getResponseWithInterceptorChain()返回了 Response ,由此可见访问网络从服务器获取数据的操作都在getResponseWithInterceptorChain()内
②这里引入了拦截器链,Request 需要通过拦截器链接收相应的处理最后才会发送到服务器并获取服务器返回的响应
拦截器执行顺序
-
应用拦截器:开发者添加的拦截器
-
retryAndFollowUpInterceptor:负责失败重连操作,以及重定向,如果 call 被取消会抛出 IOException
-
BridgeInterceptor:作为网络层与应用层之间的桥梁,把(应用层请求)user request转化为(网络层请求)network request,然后向服务器发送network request,得到(网络层响应)network reseponse后转化为(应用层响应) user response
-
CacheInterceptor:处理缓存中的 requests 以及把 responses 写到缓存
-
ConnectInterceptor:负责与目标服务器建立连接
-
网络拦截器:开发者添加的拦截器
-
CallServerInterceptor:拦截器链的最后一个拦截器,负责向服务器发送请求和从服务器获取响应数据
异步请求代码如下
// RealCall.java
@Override public void enqueue(Callback responseCallback) {
synchronized (this) { // 如果这个 call 已经被执行过,抛异常
if (executed) throw new IllegalStateException(“Already Executed”);
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
AsyncCall call = new AsyncCall(responseCallback);
Dispatcher dispatcher = client.dispatcher();
dispatcher.enqueue(call);
把 responseCallback 封装成 AsyncCall
返回了一个 Dispatcher
调用任务调度器 Dispatcher 的 enqueue() 异步执行 call
解一下 Dispatcher
// Dispatcher.java
public final class Dispatcher {
// 同步请求和异步请求之和最大值
private int maxRequests = 64;
// 同一个 host 请求数最大值
private int maxRequestsPerHost = 5;
private @Nullable Runnable idleCallback;
/** Executes calls. Created lazily. */
/** 用于执行请求的线程池,且是懒加载的 */
private @Nullable ExecutorService executorService;
/** Ready async calls in the order they’ll be run. */
/** 等待被执行的异步请求 */
private final Deque readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven’t finished yet. */
/** 正在执行的异步请求,包括已经被取消但未完成的请求 */
private final Deque runningAsyncCalls = new ArrayDeque<>();
/** Running synchronous calls. Includes canceled calls that haven’t finished yet. */
/** 正在执行的同步请求,包括已经被取消但未完成的请求 */
private final Deque runningSyncCalls = new ArrayDeque<>();
…
public synchronized ExecutorService executorService() {
if (executorService == null) {
// 核心线程数为0,最大线程数为 Integer.MAX_VALUE ,空闲线程最多存活60秒
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue(), Util.threadFactory(“OkHttp Dispatcher”, false));
}
return executorService;
}
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests
&& runningCallsForHost(call) < maxRequestsPerHost) {
// 如果正在执行的异步请求数没有达到最大值
// 就放到 runningAsyncCalls 标记为正在执行
runningAsyncCalls.add(call);
// 用 executorService 执行这个异步请求
executorService().execute(call);
} else {
// 如果正在执行的异步请求数达到最大值
// 就放到 readyAsyncCalls 标记为等待执行
readyAsyncCalls.add(call);
}
}
…
}
Dispatcher 是任务调度器,内部建立了一个线程池 ExecutorService ,而且维护了三个集合:
-
readyAsyncCalls : 等待被执行的异步请求集合
-
runningAsyncCalls : 正在执行的异步请求集合,包括已经被取消但未完成的请求
-
runningSyncCalls : 正在执行的同步请求集合,包括已经被取消但未完成的请求
所有异步请求都交由线程池 ExecutorService 来执行。
线程池其实是 ThreadPoolExecutor ,且核心线程数为 0 、最大线程数为Integer.MAX_VALUE、空闲线程存活最大时间为60秒,即所有线程执行完之后空闲60秒就会被销毁,而且存在线程过多导致内存溢出问题等问题,但是在 Dispatcher 的调度下是不会发生线程过多情况的,因为 Dispatcher 限制了正在执行的请求数(同步和异步之和)最大为64,同一个host下请求同时存在数最大值为 5 。
线程池会调用线程执行 AsyncCall 的 execute()
// RealCall.java
final class AsyncCall extends NamedRunnable {
…
@Override protected void execute() {
boolean signalledCallback = false;
try {
// 通过拦截器链得到从服务器获取的响应 Response
Response response = getResponseWithInterceptorChain();
// 如果 retryAndFollowUpInterceptor.cancel() 被调用过就报异常
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true; // 标记 callback 回调函数已被调用
responseCallback.onFailure(RealCall.this, new IOException(“Canceled”));
} else {
// 到这里表示获取响应成功
signalledCallback = true; // 标记 callback 回调函数已被调用
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {
// 最后要通知 dispatcher 标记该任务已完成
client.dispatcher().finished(this);
}
}
}
AsyncCall 的 execute() 逻辑很简单,getResponseWithInterceptorChain() 我们已经在上篇文章中了解过了,获取 Response 之后只需要判断是回调 responseCallback 的 onFailure() 还是 onResponse(),所以 enqueue() 中的回调方法是在子线程中被调用的,当然最后还要调用 finished() 通知 Dispatcher 该任务已经完成了,需要从runningAsyncCalls中移除该任务。
Dispatcher 的判断就在每个异步任务结束时调用的 finish(call) 内
// Dispatcher.java
// 异步请求
void finished(AsyncCall call) {
finished(runningAsyncCalls, call, true);
}
// 同步请求
void finished(RealCall call) {
finished(runningSyncCalls, call, false);
}
private void finished(Deque calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。





既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)
最后
说一千道一万,不如自己去行动。要想在移动互联网的下半场是自己占有一席之地,那就得从现在开始,从今天开始,马上严格要求自己,既重视业务实现能力,也重视基础和原理。基础夯实好了,高楼才能够平地而起,稳如泰山。
最后为了帮助大家深刻理解Android相关知识点的原理以及面试相关知识,这里放上相关的我搜集整理的24套腾讯、字节跳动、阿里、百度2020-2021面试真题解析,我把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包知识脉络 + 诸多细节。
还有 高级架构技术进阶脑图、Android开发面试专题资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。



网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
//img2.imgtp.com/2024/03/13/H4lCoPEF.jpg" />
最后
说一千道一万,不如自己去行动。要想在移动互联网的下半场是自己占有一席之地,那就得从现在开始,从今天开始,马上严格要求自己,既重视业务实现能力,也重视基础和原理。基础夯实好了,高楼才能够平地而起,稳如泰山。
最后为了帮助大家深刻理解Android相关知识点的原理以及面试相关知识,这里放上相关的我搜集整理的24套腾讯、字节跳动、阿里、百度2020-2021面试真题解析,我把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包知识脉络 + 诸多细节。
还有 高级架构技术进阶脑图、Android开发面试专题资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。
[外链图片转存中…(img-6AZS9GVI-1712377878007)]
[外链图片转存中…(img-THITS0R1-1712377878007)]
[外链图片转存中…(img-mRUz72SI-1712377878007)]
网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
更多推荐



所有评论(0)